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Promotion, Evacuation and Cactus groups
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Abstract. The promotion operator on rectangular standard tableaux can be gener-
alised to an operator acting on the invariant highest weight words in the tensor power
of a crystal. For the vector representation of a symplectic group the Sundaram corre-
spondence is an injective map to perfect matchings. We show that this map intertwines
promotion and rotation. For the adjoint representation of a general linear group we
construct a similar map to permutations. We show that this map also intertwines pro-
motion and rotation. These results are proved using an approach to the action of the
cactus group using a generalisation of local rules and growth diagrams.
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1 Introduction

Our journey begins with the discovery that Sundaram’s map from oscillating tableaux to
perfect matchings, regarded as chord diagrams (as in Figure 1), intertwines promotion
and rotation, see Theorem 2.4. Oscillating tableaux are highest weight words in a tensor
power of the crystal of the vector representation of the symplectic group Sp(2n), and
promotion is a natural generalisation of Schützenberger’s promotion map on standard
Young tableaux.

Similarly, there is a natural map from Stembridge’s alternating tableaux, the highest
weight words in the r-th tensor power of the crystal for the adjoint representation of
the general linear group GL(n), to permutations. It turns out that this map intertwines
promotion and rotation provided that n ≥ r, see Theorem 2.8.

A convenient setting for these variants of promotion are the cactus groups, intro-
duced by Devadoss [2, def 6.1.2] and placed into our context by Henriques and Kam-
nitzer [3]. These are infinite groups related to coboundary categories in a similar way as
the braid groups are related to braided categories. Thus, our goal is to make the effect
of the cactus groups in the coboundary category of crystals of a complex reductive Lie
algebra g transparent. To do so, we use the local rules discovered by van Leeuwen [4],
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generalising the classical local rule for jeu de taquin by Fomin to all minuscule represen-
tations of Lie groups. The relation between these local rules and the action of the cactus
groups was established by Lenart [5].

Let C = C1 ⊗ · · · ⊗ Cr be an r-fold tensor product of crystals. Then the generators
sp,q, for 1 ≤ p < q ≤ r, of the cactus group map highest weight words of C bijectively to
highest weight words of C1 ⊗ · · · ⊗ Cp−1 ⊗ Cq ⊗ · · · ⊗ Cp ⊗ Cq+1 ⊗ · · · ⊗ Cr.

For example, when g is the Lie algebra of the special linear group SL(n), and C1 =
· · · = Cr is the crystal of its vector representation, the highest weight words of C are
standard Young tableaux of size r with at most n columns. Then, the generator s1,r of the
cactus group is precisely Schützenberger’s evacuation, and s1,r s2,r is Schützenberger’s
promotion. As an aside, we remark that in this case the generators si,i+2 encode Assaf’s
dual equivalence graph.

More generally, when Ci is the crystal of the µi-th exterior power of the vector repre-
sentation then the highest weight words of C are semistandard Young tableaux of weight
µ, with at most n columns: the weight of the i-th letter specifies the columns in which
the number i appears. Again, s1,r acts as evacuation and s1,r s2,r as promotion. Using
evacuation as a building block, the action of the cactus groups on semistandard Young
tableaux was studied by Chmutov, Glick and Pylyavskyy [1].

By analogy we call ev w = s1,r w the evacuation of a highest weight word w, and
pr w = s1,r s2,r w its promotion. The promotion of w can be obtained as follows:

let w′ be w without its first letter,

let w′′ be the unique highest weight word in the same component as w′,

append the uniquely determined letter to w′′, such that the result has the same
weight as w.

This general definition of the promotion operator has been studied in connection
with the cyclic sieving phenomenon. Rhoades established a cyclic sieving phenomenon
for the promotion operator acting on rectangular standard tableaux. This was gener-
alised to promotion on invariant words in the crystal of a minuscule representation by
Fontaine and Kamnitzer, using the geometric Satake correspondence. A cyclic sieving
phenomenon for the promotion operator acting on invariant words in any crystal was
given by Westbury [14], exploiting the fact that Lusztig’s canonical basis for invariant
tensors is preserved by promotion.

Cyclic sieving phenomena for perfect matchings and permutations together with ro-
tation were established by Rubey and Westbury [8, 9]. There, a basis of the space of
invariant tensors which is invariant under rotation was constructed, in an elementary
way. The construction involved the two fundamental theorems of invariant theory, as-
serting that the tensors of chord diagrams are a basis of the space of invariant tensors.

The promotion and rotation operators on invariant tensors were shown to agree by
Westbury [14], in the following sense. It is true in general that, given a vector space
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Figure 1: A 3-noncrossing perfect matching and a permutation as chord diagrams.

with a linear operator of finite order and two bases each preserved by the operator then
there is a bijection between the two bases which intertwines the two actions of the op-
erator. In particular, this implies for our setting that there exists a bijection between
chord diagrams and invariant words which intertwines rotation and promotion. How-
ever constructing such a bijection explicitly remained an open problem, which we solve
here.

2 Results

We aim at making the action of the cactus group on the highest weight words of a
tensor power of certain representations transparent. Our approach works best for tensor
products of minuscule representations of a Lie group. A representation is minuscule if
the Weyl group W of the Lie group acts transitively on the weights of the representation:
the set of weights forms a single orbit under the action of W. The non-trivial minuscule
representations are:

Type An: All exterior powers of the vector representation.

Type Bn: The spin representation.

Type Cn: The vector representation.

Type Dn: The vector representation and the two half-spin representations.

Type E6: The two fundamental representations of dimension 27.

Type E7: The fundamental representation of dimension 56.

There are no nontrivial minuscule representations in types G2, F4 or E8.
For tensor products of exterior powers of the vector representation of GL(n), the

action of the cactus group is known, as already mentioned in the introduction.
Highest weight words of weight zero of ⊗rS, where S is the the spin representation

of the spin group Spin(2n + 1) can be identified directly with fans of n Dyck paths of
length r. One can show that ev acts on these as reversal.
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The vector representation of the odd orthogonal group SO(2n + 1) is not minuscule,
but appears as a direct summand in S⊗ S. In particular, highest weight words of weight
zero of a tensor power of the vector representation of SO(3) can be identified with
noncrossing set partitions without singletons, and pr acts on these as rotation.

However, our main contributions concern the vector representation of Sp(2n) and the
adjoint representation of GL(n) - regarded as the tensor product of the vector represen-
tation and its dual.

2.1 The vector representation of the symplectic groups

Definition 2.1 (Sundaram [13]). An n-symplectic oscillating tableau of length r and (final)
shape µ is a sequences of partitions

∅=µ0, µ1, . . . , µr =µ

such that the Ferrers diagrams of two consecutive partitions differ by exactly one box, and each
partition µi has at most n non-zero parts.

Proposition 2.2. Let C be the crystal corresponding to ⊗rV, where V is the vector represen-
tation of the symplectic group Sp(2n). Then the highest weight words of C are obtained from
n-symplectic oscillating tableaux by considering each partition as a vector in Zn and taking
successive differences. Explicitly, the highest weight word corresponding to O is

µ1 − µ0, µ2 − µ1, . . . , µr − µr−1.

A now classic bijection due to Sundaram [13] maps an oscillating tableau O of length
r to a pair

(
M(O),MT(O)

)
, consisting of a matching of a subset of {1, . . . , r} and a

partial standard Young tableau on the complementary subset. We describe this bijection
in Section 4.

Theorem 2.3. Let O be an n-symplectic oscillating tableau of length r, not necessarily of empty
shape. ThenM(evO) is the reversal ofM(O) andMT(evO) is the Schützenberger evacuation
ofMT(O).

There is a remarkable geometric description of perfect matchings corresponding to
n-symplectic oscillating tableaux of empty shape under Sundaram’s bijection: visualise
a perfect matching by drawing its pairs as (straight) diagonals connecting the vertices of
a labelled regular r-gon. Then a perfect matching is (n + 1)-noncrossing, and the image
of an n-symplectic oscillating tableau, if it contains at most n pairs that mutually cross
in this picture.

Theorem 2.4. The bijection M between n-symplectic oscillating tableaux of empty shape and
(n + 1)-noncrossing perfect matchings intertwines promotion and rotation, and evacuation and
reversal:

rotM(O) =M(prO) and revM(O) =M(evO).
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2.2 The adjoint representation of the general linear groups

Definition 2.5 (Stembridge [12]). A GL(n)-alternating tableau of length r and weight µ is a
sequence of vectors in Zn

∅=µ0, µ1, . . . , µ2r =µ

such that

the entries in each vector are weakly decreasing,

for even i, µi+1 is obtained from µi by adding 1 to an entry, and

for odd i, µi+1 is obtained from µi by subtracting 1 from an entry.

Proposition 2.6. Let C be the crystal corresponding to ⊗rGL(n), where GL(n) is the adjoint
representation of the general linear group GL(n). Then the highest weight words of C are obtained
from GL(n)-alternating tableaux by taking successive differences. Explicitly, the highest weight
word corresponding to A is the sequence of r pairs

(µ1 − µ0, µ2 − µ1), . . . , (µ2r−1 − µ2r−2, µ2r − µ2r−1).

It is tempting to regard each vector in an alternating tableau as a pair of partitions
by separating the positive and negative terms. Indeed, this is what we will do below.
However, for n > 2 promotion does not preserve the number of non-zero entries of an
alternating tableau. In fact, it is not clear whether there is an embedding ι of the set of
GL(n)-alternating tableaux for into the set of GL(n + 1)-alternating tableaux such that
pr ι(A) = prA.

In Section 4, we introduce a bijection similar in spirit to Sundaram’s, that maps an
alternating tableau A of length r to a triple

(
P(A),PP(A),PQ(A)

)
, consisting of a bi-

jection between two subsets, R and S, of {1, . . . , r}, and two partial standard Young
tableaux. The shapes of these tableaux are obtained by separating the positive and nega-
tive terms in the weight of the alternating tableaux. The entries of the first tableaux then
form the complementary subset of R, the entries of the second form the complementary
subset of S.

Theorem 2.7. Let A be a GL(n)-alternating tableau of length r ≤ bn+1
2 c, not necessarily of

empty weight. Then P(evA) is the reversal of the complement of P(A) and(
PP(evA),PQ(evA)

)
=
(

evPP(A), evPQ(A)
)
.

Theorem 2.8. For n ≥ r − 1 and also for n ≤ 2 the bijection P between GL(n)-alternating
tableaux of empty weight and permutations intertwines rotation and promotion:

rotP(A) = P(prA).

For odd n ≥ r and for even n ≥ r− 1, it intertwines reverse-complement and evacuation:

rcP(A) = P(evA).
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3 The cactus groups and local rules

Definition 3.1. The r-fruit cactus group, Cr, has generators sp,q for 1 ≤ p < q ≤ r and
defining relations

• s2
p,q = 1

• sp,q sk,l = sk,l sp,q if q < k or l < p

• sp,q sk,l = sp+q−l,p+q−k sp,q if p ≤ k < l ≤ q

The following lemma shows that it is sufficient to define the action of the composite
s1,q s2,q. The first relation was observed by White [15, lem. 2.3], the second is essentially
how Schützenberger [10, sec. 5] introduced evacuation initially.

Lemma 3.2. We have

sp,q = s1,q s1,q−p+1 s1,q and s1,q = s1,2 s2,2 s1,3 s2,3 . . . s1,q s2,q .

Henriques and Kamnitzer [3] defined the action of the cactus group on r-fold tensor
products of crystals in terms of Lusztig’s involution introduced in [6]. For semistandard
Young tableaux this involution is precisely Schützenberger’s evacuation. However, we
follow Lenart’s approach [5] and define the action of the cactus group in terms of van
Leeuwen’s local rules [4, Rule 4.1.1], which generalise Fomin’s [11, A 1.2.7].

Definition 3.3. Let λ be any weight of a Lie group with Weyl group W. Then domW(λ) is the
dominant representative of the W-orbit Wλ.

Let A be a crystal and B and C be crystals of minuscule representations. Then the local rule

τA
B,C : A⊗ B⊗ C → A⊗ C⊗ B

is a weight preserving bijection defined for highest weight words α⊗ β⊗ γ as follows: let κ be
the weight of α, let λ be the weight of α⊗ β and let ν be the weight of α⊗ β⊗ γ. Then

τA
B,C(α⊗ β⊗ γ) = α⊗ γ′ ⊗ β′,

where, regarding κ, λ, µ and ν as vectors,

µ = domW(κ + ν− λ), γ′ = µ− κ and β′ = ν− µ.

We represent this by the following diagram:

κ

λ ν

µ
β β′

γ

γ′

Figure 2
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From now on we omit the labels on the edges, because they are determined by the weights.
Any isomorphism between crystals is determined by specifying a bijection between the cor-

responding highest weight words. Such a bijection can then be extended to the whole crystal by
applying the lowering operators.

Definition 3.4. Let C1, . . . , Cr be crystals. Then s1,q s2,q is the map

τ
C2⊗···⊗Cq−1
C1,Cq

◦ · · · ◦ τC2
C1,C3

◦ τ I
C1,C2

from C1 ⊗ · · · ⊗ Cr to C2 ⊗ · · · ⊗ Cq ⊗ C1 ⊗ Cq+1 ⊗ · · · ⊗ Cr.
Here, to improve readability we omitted identity mappings and wrote τA

B,C instead of τA
B,C⊗ 1D

when applying the map to a tensor product A⊗ B⊗ C⊗ D.

A straightforward induction shows that this definition agrees with Henriques and
Kamnitzer’s. Our definition may appear at first sight less general than theirs, since
we require minuscule representations. However, it turns out that any crystal can be
embedded in a tensor product of minuscule or so called quasi-minuscule crystals, for
which a local rule is also available. In fact, for Cartan types other than E8, F4 and G2,
tensor products of minuscule crystals are sufficient.

In particular, promotion and evacuation of GL(n)-alternating tableaux can be accom-
modated as follows. Regard the adjoint representation as the tensor product V ⊗ V∗,
where V is the vector representation of GL(n) and V∗ is its dual. Both of these are
minuscule. Thus, we first apply s1,2r s2,2r to the word interpreted as an element of
C1 ⊗ · · · ⊗ C2r with C1 = V, C2 = V∗, . . . Then we apply s1,2r s2,2r again. We call the
result of this operation the promotion of the original word.

To illustrate, let us compute the promotion of a GL(3)-alternating tableau. The Weyl
group of GL(n) is the symmetric group Sn, so domW is just returning its argument
sorted in decreasing order. The first row is the original alternating tableau. Regarding
the sequence of successive differences of the vectors in the first row as an element of⊗5(V ⊗V∗), the second row is obtained by applying s1,10 s2,10. Repeating this one more
time, we obtain the promotion. For better readability we write 1̄ in place of −1.

000 100 101̄ 201̄ 21̄1̄ 201̄ 21̄1̄ 201̄ 101̄ 100 000

000 001̄ 101̄ 11̄1̄ 101̄ 11̄1̄ 101̄ 001̄ 000 001̄ 000

000 100 101̄ 111̄ 101̄ 111̄ 101̄ 100 101̄ 100 000

(3.1)

The four vectors in the square demonstrate that the naive embedding of GL(n)-alternating
tableaux into the set of GL(n+ 1)-alternating tableaux is not compatible with promotion,
as mentioned in Section 2.2: padding the vectors in the square corresponding to κ, λ and
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ν in Figure 2 with zeros, and applying the local rule, we obtain the square

1001̄ 101̄1̄

1101̄ 111̄1̄,

with µ = 111̄1̄, rather than the vector 1001̄ one might expect.

4 Growth diagram bijections

In this section we recall Sundaram’s bijection (using Roby’s description [7]) between
oscillating tableaux and matchings. We also present a new bijection, in the same spirit,
between alternating tableaux and partial permutations. In both cases, the action of the
cactus group on highest weight words becomes particularly transparent when using
Fomin’s growth diagrams and local rules for the Robinson-Schensted correspondence.

We give a slightly non-standard presentation with the benefit that these local rules
can be regarded as a variation of the classical case of Definition 3.3.

c =

κ

λ ν

µ

or c =

λ

λ λ

µ

×

µ′ = domSn(κ
′ + ν′ − λ′) µ = λ + ε1

λ′ = domSn(κ
′ + ν′ − µ′) λ = µ− ε1

Figure 3: Cells of a growth diagram and corresponding local rules.

In general, a growth diagram is a finite collection of cells (as in Figure 3, where a
prime denotes the conjugate partition), arranged in the form of a Ferrers diagram. Thus,
for each cell in the diagram all cells above and to the left are also present. The four
corners of each cell c are labelled with partitions as indicated.

A difference to Definition 3.3 is that two adjacent partitions (as for example λ and κ

in Figure 3) either coincide or the one at the head of the arrow is obtained from the other
by adding a single box. In the latter case, we write λ l κ and, if κ is obtained by adding
one to the i-th part, κ = λ + εi.

The two rules in Figure 3 determining µ are called forward rules, the two rules in
Figure 3 determining λ are called backward rules.
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Figure 4: A pair of growth diagrams G(O) and G(s1,9O) illustrating Theorem 2.3. The
dotted line indicates the axis of reflection for the matchingsM(O) andM(s1,9O).

4.1 Roby’s description of Sundaram’s correspondence

Definition 4.1. Let O = (µ0, µ1, . . . , µr) be an oscillating tableau. The associated triangular
growth diagram G(O) consists of r left-justified rows, with i− 1 cells in row i for i ∈ {1, . . . , r},
where row 1 is the bottom row. Label the cells according to the following specification:

R1 Label the corners of the cells along the diagonal from south-west to north-east with the
partitions in O.

R2 Label the corners of the subdiagonal with the smaller of the two partitions labelling the two
adjacent corners on the diagonal.

R3 Use the backward rules to determine which cells contain a cross.

LetM(O) be the matching containing a pair {i, j} for every cross in column i and row j of
the G(O). Furthermore, letMT(O) be the partial standard Young tableau corresponding to the
sequence of partitions along the top border of G(O).

An example for this procedure, which also illustrates Theorem 2.3, can be found in
Figure 4. Let w be the highest weight word 1, 2, 1,−2, 2,−1, 1, 3,−3. The partitions in
the corresponding 3-symplectic oscillating tableau O label the corners of the diagonal of
the growth diagram on the left hand side. Applying the backward rules, we obtain the
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matching and the partial standard Young tableau

M(O) =
{
{1, 4}, {2, 9}, {3, 6}

}
andMT(O) = 5 7

8
.

Using Lemma 3.2 and Definition 3.4 one can compute that s1,9 w is the highest weight
word 1, 2, 3, 1, 2, 1,−2,−3,−1 corresponding to the 3-symplectic oscillating tableau la-
belling the corners of the diagonal of the growth diagram on the right hand side. Ap-
plying the backward rules again, we obtain the matching and the partial standard Young
tableau predicted by Theorem 2.3:

M(s1,9O) =
{
{1, 8}, {4, 7}, {6, 9}

}
andMT(s1,9O) = 2 5

3
.

4.2 A new variant for Stembridge’s alternating tableaux

Definition 4.2. Let A = µ0, µ1, . . . , µ2r be an alternating tableau. The associated growth dia-
gram G(A) is an r× r square of cells, obtained as follows:

P0 Transform A into a sequence of pairs of partitions (staircases in Stembridge’s terminology)

(π0, ν0), (π1, ν1), . . . , (π2r, ν2r).

Each vector µi is a weakly decreasing sequence of integers. We obtain the positive part of
the staircase, the partition πi from µi by removing all entries less than or equal to zero. The
negative part of the staircase, νi is obtained from µi by removing all entries greater than or
equal to zero, reversing the signs of the remaining entries and reversing the sequence.

P1 Label the corners of the cells along the diagonal from north-west to south-east with these
staircases.

P2 Apply the backward rules (rotated counterclockwise by 90◦) on the positive parts of the
staircases to determine which cells below the diagonal contain a cross.

P3 Use the backward rules (rotated clockwise by 90◦) on the negative parts of the staircases to
determine which cells above the diagonal contain a cross.

Let P(A) be the partial permutation mapping i to j for every cross in column i and row j of
G(A), and let

(
PP(A),PQ(A)

)
be the pair of partial standard Young tableau corresponding to

the sequence of partitions along the bottom and the right border of G(A), respectively.

An example for this procedure, which also illustrates Theorem 2.7, can be found in
Figure 5. Let w be the GL(10) highest weight word

(e1,−e10), (e1,−e10), (e10,−e9), (e9,−e10), (e10,−e10), (e2,−e10),
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Figure 5: A pair of growth diagrams G(A) and G(s1,6A) illustrating Theorem 2.7.

where ei is the i-th standard vector. The staircases in the corresponding alternating
tableau A label the corners of the diagonal of the growth diagram on the left hand side,
where we write the negative partitions with bars. Applying the backward rules, we
obtain the partial permutation and the partial standard Young tableaux

P(A) =
{
(3, 2), (4, 1), (5, 4)

}
,PP(A) = 3 5 6 , and PQ(A) = 1 2

6
.

On the right hand side of the figure the growth diagram obtained by applying the same
procedure to s1,6 w, which yields

P(A) =
{
(2, 3), (3, 6), (4, 5)

}
,PP(A) = 1 2 4 , and PQ(A) = 1 6

5
.

as predicted by Theorem 2.7.
Finally, consider the GL(3)-alternating tableau in the first row of (3.1), which corre-

sponds to the permutation depicted in Figure 1. However, its promotion, as computed
in the last row of (3.1), is different from the alternating tableau corresponding to the
rotated permutation. Indeed, the hypothesis of Theorem 2.8 is not satisfied.
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